
QaaD (Query-as-a-Data):
Scalable Execution of Massive Number of Small
Queries in Spark

Yeonsu Park1, Byungchul Tak2, and Wook-Shin Han1

1POSTECH
2Kyungpook National University

What is Apache Spark?

2

Key Uses
• SQL analytics

• Machine learning

• Streaming data

Fast and general cluster computing engine to process large-scale data

Design & Performance
• Designed for high-performance,

heavy data workloads

• Enables high-degree of parallelism

Spark is the most widely-used big data processing platform.

Intended Workload of Spark

3

Spark is designed and optimized for a query needing
homogeneous operations on large datasets.

Dataset: a collection
of (month, sales)s Jan 23, 500$

...
Apr 23, 400$
May 23, 400$
Jun 23, 450$

...

Partition by year

needs the entire large-scale dataset
Q. What are my total sales?

Jan 22, 250$
...

Oct 22, 350$
Nov 22, 200$
Dec 22, 250$

Jan 21, 400$
...

Oct 21, 350$
Nov 21, 200$
Dec 21, 450$

Scan Scan Scan

for 2023 for 2022 for 2021

Query

Unintended Workload of Spark

4

Queries for small input data continue to grow
in the workload of big data platforms.

needs the data only for this year

What are my total sales for the last three months?

Characteristics: Light computation & A massive number
Observed in Youtube [1] , Alibaba Cloud [2], ...

[1] Biswapesh Chattopadhyay, et al. “Procella: Unifying Serving and Analytical Data at YouTube.” (VLDB’19)
[2] Rui Han, et al. “Adaptiveconfig: Run-time configuration of cluster schedulers for cloud short-running jobs.” (ICDCS’18)

Query

• Dashboarding queries for statistics of recent data by Amazon sellers

• High-level libraries such as Pig and Hive
▪ High-level user queries a large number of small Spark queries

Primary Sources of Queries for Small Data

5

...

Q. Sales per month
of this year

$

Q. Top-3 product
categories of this year

...

1. Electronics

2. Home & Kitchen
3. Books

• We define a small query as the query whose input data can fit into a single
partition specified in the Spark configuration.

workloads consisting of a massive number of small queries

Our Definition of Small Query

6

Partition by year
needs the data stored in a partition

Jan 23, 500$
...

Apr 23, 400$
May 23, 400$
Jun 23, 450$

Q. What are my total sales
for the last three months?

Dataset: a collection
of (month, sales)s

for 2023

Query

Key Concept in Spark: RDD

7

• RDD (Resilient Distributed Dataset):
an immutable distributed collection of
elements of data

▪ Resilient: if data is lost, it can be recreated
▪ Distributed: stored across the cluster
▪ Dataset: collection of data records

• Partition: an atomic piece of the dataset
stored in a node

• Task: an execution unit created by Spark

Partition 1 Partition 2 Partition 3

RDD0Dataset

transformation

Partition 1 Partition 2 Partition 3

RDD1

...

Worker

RAM
Input

Data

Worker

RAM
Input

Data

Worker

RAM
Input

Data

Task 1 Task 2 Task 3

Key Concept in Spark: Transformations

8

• Narrow transformations apply an operation to a single partition.
▪ map, filter, flatMap, sample, ...

• Wide transformations require data to be shuffled or moved across
multiple partitions.

▪ join, groupByKey, reduceByKey, ...

Partition 1 Partition 2 Partition 3

Partition 1 Partition 2 Partition 3

RDD0

RDD1

Task1 Task2 Task3

Partition 1 Partition 2 Partition 3 RDD1

Partition 1 Partition 2 Partition 3 RDD0

Task1 Task2 Task3

Narrow transformation (e.g., map) Wide transformation (e.g., reduceByKey)

Shuffle

Setup Cost of Spark

9

⚫ The total execution time = setup time + compute time

⚫ The setup time includes
▪ Scheduler delay time: waiting time to determine the order of tasks

▪ Task (de)serialization time: time to (de)serialize tasks to send tasks over the network

▪ Application launch overhead: startup of executor JVMs, resource allocation

tasks

tasks

tasks

Worker

RAM
Input

Data

Worker

RAM
Input

Data

Worker

RAM
Input

Data

Master
(Driver

Program)

Query

Spark cluster

!

Task scheduling delay
& App launch overhead

ByteStream
serialize deserialize

ByteStream

ByteStream

serialize

serialize

deserialize

deserialize

Compute Cost of Spark

10

⚫ The total execution time = setup time + compute time

⚫ The compute time includes
▪ Executor computing time

▪ shuffle read/write time

tasks

tasks

results

tasks

results

results

Worker

RAM
Input

Data

Worker

RAM
Input

Data

Worker

RAM
Input

Data

Master
(Driver

Program)

Spark cluster

Query

Transformation

Partition 1 Partition 2

Partition 1 Partition 2

Time to transform data

by worker nodes

...

...

Problems with Running Small Queries in Spark

11

Problem 1. Too large setup time compared to actual computation time

Problem 2. Insufficient degree of parallelism
Too few number of partitions low parallelism

tasks

tasks

results

tasks

results

results

Worker

RAM
Input

Data

Worker

RAM
Input

Data

Worker

RAM
Input

Data

Master
(Driver

Program)

Spark cluster

Setup Time

Compute Time
Query

!

Task scheduling delay
& App launch overhead

Query Merging: a massive number of small queries a big query

Key Idea in Our Solution: Query Merging

12

Spark performs for this merged inputRDD

A big query with Q1-Q5 merged together

Jan 23, 500$
...

Apr 23, 400$
May 23, 400$
Jun 23, 450$

Sales per month
for 2023

Shampoo, 7$
...

T-shirt, 15$
Jan 23, 50

...
June 23, 60

Ordered product
& price for 2023

... inputRDD
(merged)

Q1

Q2

Q3

Book, 4.5
...

Pen, 4.3
Bag, 4.7
Cup, 4.6

Products & Ratings
for 2023

Q4

Q5
Monthly units sold

for 2023

Query Merging: a massive number of small queries a big query

Key Idea in Our Solution: Query Merging

13

Spark performs for this merged inputRDD

A big query with Q1-Q5 merged together

Jan 23, 500$
...

Apr 23, 400$
May 23, 400$
Jun 23, 450$

Sales per month
for 2023

Shampoo, 7$
...

T-shirt, 15$
Jan 23, 50

...
June 23, 60

Ordered product
& price for 2023

... inputRDD
(merged)

Q1

Q2

Q3

Book, 4.5
...

Pen, 4.3
Bag, 4.7
Cup, 4.6

Products & Ratings
for 2023

Q4

Q5
Monthly units sold

for 2023
Solving Problem 1. Improvement of setup-to-compute time ratio
• Individual setup time per query is eliminated

Solving Problem 2. Higher parallelism
• Large merged data leads to many partitions

Key Idea in Our Solution: Query Processing of Task 1

14

500$
...

400$
400$
450$

... outputRDD

Jan 23, 500$
...

Apr 23, 400$
May 23, 400$
Jun 23, 450$

Sales per month
for 2023

Shampoo, 7$
...

T-shirt, 15$
Jan 23, 50

...
June 23, 60

... inputRDD
(merged)

Q1

Q2

Q3

Book, 4.5
...

Pen, 4.3
Bag, 4.7
Cup, 4.6 Q4

Q5

Task 1

...

Q1: extracts sales from
(month, sales) records

via map ...

Key Idea in Our Solution: Query Processing of Task 2

15

500$
...

400$
400$
450$

Shampoo
...

T-shirt
Jan 23, 50

...
June 23, 60

outputRDD

Jan 23, 500$
...

Apr 23, 400$
May 23, 400$
Jun 23, 450$

Shampoo, 7$
...

T-shirt, 15$
Jan 23, 50

...
June 23, 60

Ordered product
& price for 2023

... inputRDD
(merged)

Q1

Q2

Q3

Book, 4.5
...

Pen, 4.3
Bag, 4.7
Cup, 4.6 Q4

Q5

Task 2

...

Q2: extracts product names from
(product name, price) records

via map

...
Q3: filters out records
with a monthly units
sold of less than 50

via filter

Monthly units sold
for 2023

Key Idea in Our Solution: Query Processing of Task 3

16

500$
...

400$
400$
450$

Shampoo
...

T-shirt
Jan 23, 50

...
June 23, 60

outputRDD

Jan 23, 500$
...

Apr 23, 400$
May 23, 400$
Jun 23, 450$

Shampoo, 7$
...

T-shirt, 15$
Jan 23, 50

...
June 23, 60

... inputRDD
(merged)

Q1

Q2

Q3

Book, 4.5
...

Pen, 4.3
Bag, 4.7
Cup, 4.6

Products & Ratings
for 2023

Q4

Q5

Task 3

Book, 4.5
...

Cup, 4.6
4.5
...

4.6

Q4: filters out records with
a rating of less than 4.0 rating

via filter

Q5: extracts ratings from
(product, rating) records

via map

...

Query Embedding

17

• We need to identify which query each record is associated with in an RDD.

• Embedding of the query information (i.e., query ID 𝑄) into data (i.e., records)

merge Small queries

A big query

Q1

Q2

Q3

Q4

How to recognize records for different queries in an RDD?

Q1, 500$

...

Q1, 400$

Q1, 400$

Q1, 450$

Q2, Shampoo

...

Q2, T-shirt

Q3, (Jan 23, 50)

...

Q3, (June 23, 60)

outputRDD

Q4, Book, 4.5

...

Q4, Cup, 4.6

Q5, 4.5

...

Q5, 4.6

...
Q5

Details in Our Paper

18

• APIs for small query processing
▪ Supporting the same transformation methods as RDD

• Detailed RDD transformations for merged operations
▪ Including wide-dependency operations (e.g., join, reduceByKey)

• Adaptive partitioner (microPart)
▪ Optimizing the partitions for small queries to reduce network overheads

Experimental Setup

19

• Cluster setup
▪ One master and four worker machines
▪ Each executor used 14 cores and 128 GB RAM to run Spark applications.

• Compared techniques
▪ SparkS: the standard way of using Spark where all queries are submitted and processed

individually and independently
▪ SparkU: combining small queries in a given workload with a UNION operator

• Two real-world datasets
▪ BRA: A dataset with 100K records of orders collected between 2016 and 2018 on a Brazilian

online marketplace
▪ eBay: Transactions for auction details on eBay

▪ Query workloads obtained from the interface of amazon seller central

0

10
0

10
1

10
2

10
3

10
4

33 66 132 264 528 1056E
la

p
s
e

d
 t

im
e

 (
s
e

c
.)

of queries

SparkS
SparkU

QaaD

• Clear trends of the widening performance gap between QaaD and the other two
compared techniques as the query size scales up

• 10.6 × and 21.6 × speed-ups against SparkS for BRA and eBay datasets at the highest
workload

0

10
0

10
1

10
2

10
3

27 54 108 216 432 864E
la

p
s
e

d
 t

im
e

 (
s
e

c
.)

of queries

SparkS
SparkU

QaaD

Evaluation – Number of Queries on Performance

20

10.6 ×
21.6 ×

(a) BRA dataset. (b) eBay dataset.

0
10

0
10

1
10

2
10

3
10

4
10

5
10

6

1 10 100 1000R
e

s
p

o
n
s
e

 t
im

e
 (

s
e
c
.)

Avg. # of queries per sec.

SparkS
SparkU

QaaD

0
10

0
10

1
10

2
10

3
10

4
10

5
10

6

1 10 100 1000R
e

s
p

o
n
s
e

 t
im

e
 (

s
e
c
.)

Avg. # of queries per sec.

SparkS
SparkU

QaaD

Evaluation – Arrival Rate on Performance

21

• The response time of QaaD improves quickly as the arrival rate increases.

• QaaD outperformed SparkS by 2.8 × and 6.4 × at the arrival rate of 1000
queries/sec for BRA and eBay datasets.

2.8 ×
6.4 ×

(a) BRA dataset. (b) eBay dataset.

Conclusion

22

• A significant performance improvement of the Spark on workloads made of
a large number of small queries

• ‘Transform the workload’ to conform to what Spark was designed for to
utilize its strong point - distributed parallel processing on a large-sized
dataset

• Verification of an order of magnitude improved performance on small query
workloads through comprehensive evaluations

	Slide 1: QaaD (Query-as-a-Data): Scalable Execution of Massive Number of Small Queries in Spark
	Slide 2: What is Apache Spark?
	Slide 3: Intended Workload of Spark
	Slide 4: Unintended Workload of Spark
	Slide 5: Primary Sources of Queries for Small Data
	Slide 6: Our Definition of Small Query
	Slide 7: Key Concept in Spark: RDD
	Slide 8: Key Concept in Spark: Transformations
	Slide 9: Setup Cost of Spark
	Slide 10: Compute Cost of Spark
	Slide 11: Problems with Running Small Queries in Spark
	Slide 12: Key Idea in Our Solution: Query Merging
	Slide 13: Key Idea in Our Solution: Query Merging
	Slide 14: Key Idea in Our Solution: Query Processing of Task 1
	Slide 15: Key Idea in Our Solution: Query Processing of Task 2
	Slide 16: Key Idea in Our Solution: Query Processing of Task 3
	Slide 17: Query Embedding
	Slide 18: Details in Our Paper
	Slide 19: Experimental Setup
	Slide 20: Evaluation – Number of Queries on Performance
	Slide 21: Evaluation – Arrival Rate on Performance
	Slide 22: Conclusion

