

QaaD (Query-as-a-Data): Scalable Execution of Massive Number of Small Queries in Spark

Yeonsu Park¹, Byungchul Tak², and Wook-Shin Han¹

¹POSTECH

²Kyungpook National University

What is Apache Spark?

Fast and general cluster computing engine to process large-scale data

Key Uses

- SQL analytics
- Machine learning
- Streaming data

Design & Performance

- Designed for high-performance, heavy data workloads
- Enables high-degree of parallelism

Spark is the most widely-used big data processing platform.

Intended Workload of Spark

Spark is designed and optimized for a query needing homogeneous operations on large datasets.

Unintended Workload of Spark

Queries for small input data continue to grow in the workload of big data platforms.

What are my total sales for the **last three months**?

needs the data only for this year

Characteristics: Light computation & A massive number Observed in Youtube [1], Alibaba Cloud [2], ...

Primary Sources of Queries for Small Data

Dashboarding queries for statistics of recent data by Amazon sellers

- High-level libraries such as Pig and Hive
 - High-level user queries → a large number of small Spark queries

Our Definition of Small Query

 We define a small query as the query whose input data can fit into a single partition specified in the Spark configuration.

workloads consisting of a massive number of small queries

Key Concept in Spark: RDD

- RDD (Resilient Distributed Dataset): an immutable distributed collection of elements of data
 - Resilient: if data is lost, it can be recreated
 - Distributed: stored across the cluster
 - Dataset: collection of data records
- Partition: an atomic piece of the dataset stored in a node
- Task: an execution unit created by Spark

• • •

Key Concept in Spark: Transformations

- Narrow transformations apply an operation to a single partition.
 - map, filter, flatMap, sample, ...
- Wide transformations require data to be shuffled or moved across multiple partitions.
 - join, groupByKey, reduceByKey, ...

Setup Cost of Spark

- The total execution time = **setup time** + compute time
- The setup time includes
 - Scheduler delay time: waiting time to determine the order of tasks
 - **Task (de)serialization time**: time to (de)serialize tasks to send tasks over the network
 - Application launch overhead: startup of executor JVMs, resource allocation

Compute Cost of Spark

- The total execution time = setup time + compute time
- The compute time includes
 - Executor computing time
 - shuffle read/write time

Problems with Running Small Queries in Spark

Problem 1. Too large setup time compared to actual computation time

Problem 2. Insufficient degree of parallelism

Too few number of partitions → low parallelism

Key Idea in Our Solution: Query Merging

Key Idea in Our Solution: Query Merging

Solving Problem 1. Improvement of setup-to-compute time ratio

Individual setup time per query is eliminated

Solving Problem 2. Higher parallelism

Large merged data leads to many partitions

Key Idea in Our Solution: Query Processing of Task 1

Key Idea in Our Solution: Query Processing of Task 2

Key Idea in Our Solution: Query Processing of Task 3

Query Embedding

How to recognize records for different queries in an RDD?

- We need to identify which query each record is associated with in an RDD.
- Embedding of the query information (i.e., query ID Q) into data (i.e., records)

Details in Our Paper

- APIs for small query processing
 - Supporting the same transformation methods as RDD
- Detailed RDD transformations for merged operations
 - Including wide-dependency operations (e.g., join, reduceByKey)
- Adaptive partitioner (microPart)
 - Optimizing the partitions for small queries to reduce network overheads

Experimental Setup

Cluster setup

- One master and four worker machines
- Each executor used 14 cores and 128 GB RAM to run Spark applications.

Compared techniques

- SparkS: the standard way of using Spark where all queries are submitted and processed individually and independently
- SparkU: combining small queries in a given workload with a UNION operator

Two real-world datasets

- BRA: A dataset with 100K records of orders collected between 2016 and 2018 on a Brazilian online marketplace
- eBay: Transactions for auction details on eBay
- Query workloads obtained from the interface of amazon seller central

Evaluation – Number of Queries on Performance

- Clear trends of the widening performance gap between QaaD and the other two compared techniques as the query size scales up
- 10.6 \times and 21.6 \times speed-ups against SparkS for BRA and eBay datasets at the highest workload

Evaluation — Arrival Rate on Performance

- The response time of QaaD improves quickly as the arrival rate increases.
- QaaD outperformed SparkS by 2.8 \times and 6.4 \times at the arrival rate of 1000 queries/sec for BRA and eBay datasets.

Conclusion

- A significant performance improvement of the Spark on workloads made of a large number of small queries
- 'Transform the workload' to conform to what Spark was designed for to utilize its strong point - distributed parallel processing on a large-sized dataset

 Verification of an order of magnitude improved performance on small query workloads through comprehensive evaluations