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● Subgraph Matching is one of the most important graph queries

● Cardinality is defined as the number of embeddings

Subgraph Matching and Cardinality
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Cardinality Estimation is Essential 
for Query Optimization

● Exact cardinality estimation is important to determine the accurate 
execution cost of query plans [1]

● The cardinality of (intermediate) results and input graphs are used 
as inputs to the query optimizer cost models (i.e., Neo4j, Oracle PGX, RDF-3X)

3[1] Moerkotte, Guido, Thomas Neumann, and Gabriele Steidl. "Preventing bad plans by bounding the impact of cardinality estimation errors." (VLDB’ 09)
* Image from David J. Dewitt’s slides
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Motivation
● Existing techniques are not compared under a common framework

● Existing literature has overlooked important query features
○ Each of surveyed 54 papers has used only a subset of important query 

features: query size, query topology, and query result size

● Incomprehensive comparisons
○ The cardinality estimation techniques for graph and relational data 

are developed separately and, thus, not compared to each other
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SELECT .src AS ,
.src AS ,
.src AS ,

FROM , , ,
 

WHERE
.dst = .src AND
.dst = .src AND
.dst = .src AND

.src = .v AND
.src = .v AND
.src = .v AND

Card. Estimation for Relational Queries 
Solves the Same Problem
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[2] Abadi, Daniel J., et al. "Scalable semantic web data management using vertical partitioning." (VLDB' 07)
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Contributions

● A common framework for implementing Card. Est. 
Techniques
○ Graph and relational techniques for subgraph matching
○ Summary and sampling-based

● Thorough performance evaluation
○ Real-world and synthetic datasets
○ Various query features (query sizes, topologies, result sizes)

● Intriguing and unexpected findings
○ WanderJoin designed for online aggregation outperforms the others
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G-CARE Framework
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Card. Estimation Techniques Implemented in G-CARE

● For graph data
○ Characteristic Sets [ICDE’11]
○ IMPR [ICDM’16]
○ SumRDF [WWW’18]
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● Card. estimation techniques
○ Correlated Sampling [VLDB’15]
○ Join Sampling with Upper Bound 

(Modification from [3])
○ BoundSketch [SIGMOD’19]

● Online aggregation technique
○ WanderJoin [SIGMOD’16]

● For relational data

[3] Zhao, Zhuoyue, et al. "Random sampling over joins revisited." (SIGMOD' 18)



Summary-based Techniques
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● For graph data
○ Characteristic Sets [ICDE’11]
○ IMPR [ICDM’16]
○ SumRDF [WWW’18]

● Card. estimation techniques
○ Correlated Sampling [VLDB’15]
○ Join Sampling with Upper Bound 

(Modification from [3])
○ BoundSketch [SIGMOD’19]

● Online aggregation technique
○ WanderJoin [SIGMOD’16]

● For relational data

[3] Zhao, Zhuoyue, et al. "Random sampling over joins revisited." (SIGMOD' 18)



Sampling-based Techniques
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● For graph data
○ Characteristic Sets [ICDE’11]
○ IMPR [ICDM’16]
○ SumRDF [WWW’18]

● Card. estimation techniques
○ Correlated Sampling [VLDB’15]
○ Join Sampling with Upper Bound 

(Modification from [3])
○ BoundSketch [SIGMOD’19]

● Online aggregation technique
○ WanderJoin [SIGMOD’16]

● For relational data

[3] Zhao, Zhuoyue, et al. "Random sampling over joins revisited." (SIGMOD' 18)



G-CARE Framework
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1. PrepareSummaryStructure
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G-CARE Framework
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G-CARE Framework
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G-CARE Framework
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Chracteristic Sets [ICDE'11] and 
Wander Join [SIGMOD'16]
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● Create summary structure from the data graph
○ Input: a data graph 
○ Output: a summary 

PrepareSummaryStructure
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SummaryA data graph 

1 2

count: 1



A summary 

● Create summary structure from the data graph
○ Input: a data graph 
○ Output: a summary 

PrepareSummaryStructure
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A data graph 

1 2 1 1 1

count: 1 count: 1



● Create summary structure from the data graph
○ Input: a data graph 
○ Output: a summary 

PrepareSummaryStructure
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1 1 1 1 1

1 1 1 2 2

count: 1 count: 1 count: 1

count: 1 count: 2

A summary 



● Decompose a given query  into subqueries   

DecomposeQuery
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Decompose a query into the star-shaped subqueries

A query graph Decomposed subqueries , and 



● Obtain a series of target substructures for 

GetSubstructure
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Find target substructures
which contain all labels in qj

Decomposed subquery 
A summary 
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● Obtain a series of target substructures for 

GetSubstructure
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Find target substructures
which contain all vertex and

edge labels in qjDecomposed subquery 
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count: 1 count: 1



● Estimate cardinality of for each target substructure
● Store the estimated cardinality into a vector called  

EstCard
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How many star-shaped structures in the data graph
correspond to each target substructure

 

 

count: 1

count: 1
# of center vertices corresponding

to each target substructure

Avg. number of edges
labeled by blue connected

to each center vertex
1 2

1 1 1



● Estimate the cardinality of by aggregating over  using 
aggregation operator

AggCard
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⇒ 2 + 1 = 3
 

 

count: 1

count: 1

SUM for aggregation

1 2

1 1 1



Chracteristic Sets [ICDE'11] and 
Wander Join [SIGMOD'16]
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● Obtain a series of target substructures for 

GetSubstructure
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Return a random walk as a list of edges
and its probability 

For WanderJoin,
a substructure = a random walk

Given the walk order                                 , 
perform random walks as a sampling process



● Obtain a series of target substructures for 

GetSubstructure
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Return a random walk as a list of edges
and its probability 

Among the two green vertices,
choose one randomly

Given the walk order                                 , 
perform random walks as a sampling process



● Obtain a series of target substructures for 

GetSubstructure
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Return a random walk as a list of edges
and its probability 

Given the walk order                                 , 
perform random walks as a sampling process



● Obtain a series of target substructures for 

GetSubstructure
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Return a random walk as a list of edges
and its probability 

Among the two blue edges of ,
choose one randomly

Given the walk order                                 , 
perform random walks as a sampling process



● Obtain a series of target substructures for 

GetSubstructure
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Return a random walk as a list of edges
and its probability 

Given the walk order                                 , 
perform random walks as a sampling process



● Obtain a series of target substructures for 

GetSubstructure
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Return a random walk as a list of edges
and its probability 

Given the walk order                                 , 
perform random walks as a sampling process



● Obtain a series of target substructures for 

GetSubstructure
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Return a random walk as a list of edges
and its probability 

Given the walk order                                 , 
perform random walks as a sampling process



● Obtain a series of target substructures for 

GetSubstructure
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Sampling Failure!

Return a random walk as a list of edges
and its probability 

Given the walk order                                 , 
perform random walks as a sampling process



● Estimate cardinality of for each target substructure
● Store the estimated cardinality into a vector called  

EstCard
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Estimates the card. using HT estimator [4]

 

    

  

   

[4] Horvitz, Daniel G., and Donovan J. Thompson. "A generalization of sampling without replacement from a finite universe." (JASA' 52)

For , estimate is = 4

For , estimate is 0
(sampling failure)



● Estimate the cardinality of by aggregating over  using 
aggregation operator 

AggCard
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AVG for aggregation

For , estimate is 0
(sampling failure)

For , estimate is = 4



Experimental Results
& Important Findings
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Experimental Setup
● Datasets & Querysets
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[5]

• Metrics
– Accuracy test: q-error [6]
– Efficiency test: elapsed time

[5] Bonifati, Angela, Wim Martens, and Thomas Timm. "An analytical study of large SPARQL query logs." (VLDB' 17)
[6] Moerkotte, Guido, Thomas Neumann, and Gabriele Steidl. "Preventing bad plans by bounding the impact of cardinality estimation 
errors." (VLDB' 09)



Accuracy Evaluation for LUBM
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Query #

● Surprisingly, WanderJoin (WJ), an online aggregation technique, shows 
the best accuracy results than the other techniques

● SumRDF performs comparable to WJ, but under-estimates Q9
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Accuracy Evaluation for YAGO
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Query result size

95th percentile

75th percentile
median
25th percentile

5th percentile

Again, WJ outperforms the other techniques!

Query topology
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Efficiency Evaluation for AIDS
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● Similar result for non-RDF datasets
● C-SET is the fastest and WJ is the second fastest
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Conclusion
The 1st experimental study which evaluates and 

analyzes the state-of-the-art card. estimation 
techniques for subgraph matching

● Unexpected results
○ Existing techniques have serious problems in terms of accuracy and efficiency
○ A simple sampling method, which is based on an online aggregation technique 

designed for relational data, consistently outperforms the existing techniques

● Avenues of research
○ Integrate the benefits of WanderJoin with native graph-based techniques
○ Hybrid system that leverages native graph stores for query processing

but utilizes a relational framework for cardinality estimation
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Thank you
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