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Subgraph Matching and Cardinality

® Subgraph Matching is one of the most important graph queries

e Cardinality is defined as the number of embeddings
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Cardinality Estimation is Essential
for Query Optimization

e Exact cardinality estimation is important to determine the accurate

execution cost of query plans [I]
® The cardinality of (intermediate) results and input graphs are used

as inputs to the query optimizer cost models (.., Neo4j, Oracle PGX, RDF-3X)

Query optimizer in DBMS

Cardinality Cost
Estimation Model

Plan Space
Enumeration

Plan1 Plan2 Plan3 Plan4 Plan5

[1] Moerkotte, Guido, Thomas Neumann, and Gabriele Steidl. "Preventing bad plans by bounding the impact of cardinality estimation errors." (VLDB’ 09) 3

* Image from David . Dewitt’s slides



Motivation

e Existing techniques are not compared under a common framework

e Existing literature has overlooked important query features
o Each of surveyed 54 papers has used only a subset of important query

features: query size, query topology, and query result size

® Incomprehensive comparisons
o The cardinality estimation techniques for graph and relational data
are developed separately and, thus, not compared to each other



Card. Estimation for Relational Queries
Solves the Same Problem
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[2] Abadi, Daniel J., et al. "Scalable semantic web data management using vertical partitioning." (VLDB' 07)




Contributions

® A common framework for implementing Card. Est.
Techniques

o0 Graph and relational techniques for subgraph matching
O Summary and sampling-based

® Thorough performance evaluation

o0 Real-world and synthetic datasets

o Various query features (query sizes, topologies, result sizes)
® Intriguing and unexpected findings

o0 Wander]oin designed for online aggregation outperforms the others



G-CARE Framework



Card. Estimation Techniques Implemented in G-CARE

e For graph data ® For relational data

o Characteristic Sets [ICDE’| |]

e Card. estimation techniques
o IMPR [ICDM’| 6] o Correlated Sampling [VLDB’I 5]
o SumRDF [WWW’ 8] o Join Sampling with Upper Bound

(Madification from [3])
o BoundSketch [SIGMOD’ 9]

e Online aggregation technique
o Wanderjoin [SIGMOD’| 6]

8
[3] Zhao, Zhuoyue, et al. "Random sampling over joins revisited." (SIGMOD' 18)



Summary-based Techniques

e For graph data ® For relational data
o Characteristic Sets [ICDE’II] e Card. estimation techniques
o IMPR [ICDM’1 6] o Correlated Sampling [VLDB’15]
o Join Sampling with Upper Bound

o SumRDF [WWW’ 18]

(Madification from [3])
o BoundSketch [SIGMOD’19]

e Online aggregation technique
o Wanderjoin [SIGMOD’| 6]

[3] Zhao, Zhuoyue, et al. "Random sampling over joins revisited." (SIGMOD' 18)



Sampling-based Techniques

e For graph data e For relational data

o Characteristic Sets [ICDE’I ] e Card. estimation techniques
o IMPR [ICDM’16] o Correlated Sampling [VLDB’15]
o SumRDF [WWW’ 8] O Join Sampling with Upper Bound

(Modification from [3])
o0 BoundSketch [SIGMOD’I9]

e Online aggregation technique
0 WVanderjoin [SIGMOD’16]
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[3] Zhao, Zhuoyue, et al. "Random sampling over joins revisited." (SIGMOD' 18)



G-CARE Framework
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G-CARE Framework
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G-CARE Framework
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G-CARE Framework
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Chracteristic Sets [ICDE'l | ] and
Wander Join [SIGMOD’'1 6]
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PrepareSummaryStructure

e Create summary structure from the data graph

O Input: a data graph G

o0 Output: a summary S
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PrepareSummaryStructure

e Create summary structure from the data graph

O Input: a data graph G

o0 Output: a summary S

-

&

(T

A data graph G

count; |

on

count; |

1| 1]1

A summary S

~

/




PrepareSummaryStructure

e Create summary structure from the data graph

O Input: a data graph G

o0 Output: a summary S
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DecomposeQuery

® Decompose a given query Q into subqueries (q,, .., q )

ﬁecompose a query into the star-shaped subquerles
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GetSubstructure

e Obtain a series of target substructures for q,

/ Find target substructures
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GetSubstructure

e Obtain a series of target substructures for q,

o

Find target substructures
which contain all and
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EstCard

e Estimate cardinality of q, for each target substructure
e Store the estimated cardinality into a vector called cardVec

How many star-shaped structures in the data graph

correspond to each target substructure
count: |
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e Estimate the cardinality of q, by aggregating over cardVec using

AggCard

aggregation operator
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Chracteristic Sets [ICDE'l | ] and
Wander Join [SIGMOD’'1 6]
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GetSubstructure

e Obtain a series of target substructures for q,

> >

/ Return a random walk s.as a list of edges \
and its probability P(s)

o T

Ve

—>
Vy Vs

A data graph G

: For Wander]join,
7
a substructure = a random walk

Given the walk order O-/-O mp / -O‘

perform random walks as a sampling process /

25



GetSubstructure

e Obtain a series of target substructures for q,

/ Return a random walk s.as a list of edges \
and its probability P(s)
Given the walk order O-/-O mp / -O‘/ ,

perform random walks as a sampling process
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GetSubstructure

e Obtain a series of target substructures for q,
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Return a random walk s.as a list of edges \
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perform random walks as a sampling process
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GetSubstructure

e Obtain a series of target substructures for q,
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Return a random walk s.as a list of edges
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Given the walk order O -;‘O mp / -O‘/

perform random walks as a sampling process

Vo

™

o

Uy

—>

-

Vy v
A data grapfm G

U7

Aémong the two blue edges of v,

choose one randomly

~

/

28



GetSubstructure

e Obtain a series of target substructures for q,
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GetSubstructure

e Obtain a series of target substructures for q,
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GetSubstructure

e Obtain a series of target substructures for q,
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GetSubstructure

e Obtain a series of target substructures for q,
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EstCard

e Estimate cardinality of q, for each target substructure
e Store the estimated cardinality into a vector called cardVec

/ Estimates the card. using HT estimator [4] \
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[4] Horvitz, Daniel G., and Donovan J. Thompson. "A generalization of sampling without replacement from a finite universe." (JASA' 52)
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AggCard

e Estimate the cardinality of q, by aggregating over cardVec using

aggregation operator

/ AVG for aggregation \
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Experimental Results
& Important Findings



Experimental Setup

e Datasets & Querysets

Table 1: Parameters used in the experiments.

e Metrics

— Accuracy test: g-error [6]

— Efficiency test: elapsed time

Table 2: Statistics of datasets.

Dataset RDF: LUBM, YAGO, DBpedia
Non-rDF: AIDS, Human

Query Topology Chain, Star, Tree, Cycle,

[5] Clique, Petal, Flower, Graph

Query Result Size || (0, 10], (10, 10%], (10%,10°],
(103,10%], (10%, 10°], (10°, 10°]

Query Size 3,6,9,12

Sampling Ratio 3,1,0.3,0.1, 0.03, 0.01 [%]

LUBM | YAGO | DBpedia | AIDS | Human
# of graphs 1 1 1| 10K 1
# of vertices 2.6M | 12.8M 66.9M | 254K 4.7K
# of edges 12.3M | 15.8M 225M | 548K 86K
Avg. degree 9.33 2.47 6.75 431 36.92
Max. degree 0.9M | 0.25M 7.3M 22 771
# of distinct v. labels 35 188K 244 50 89
# of distinct e. labels 35 91 39.6K 4 0
Max triples per pred. 2.3M 8.3K 98.7M | 270K -
Min triples per pred. 1 2 1| 26K -

[5] Bonifati, Angela, Wim Martens, and Thomas Timm. "An analytical study of large SPARQL query logs." (VLDB' 17)
[6] Moerkotte, Guido, Thomas Neumann, and Gabriele Steidl. "Preventing bad plans by bounding the impact of cardinality estimation

errors." (VLDB' 09)




Accuracy Evaluation for LUBM

e Surprisingly, Wander|oin (W)), an online aggregation technique, shows
the best accuracy results than the other techniques

e SumRDF performs comparable to W], but under-estimates Q9
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Again, W/ outperforms the other techniques!

Accuracy Evaluation for YAGO
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Elapsed time (ms)

-

e Similar result for non-RDF datasets

Efficiency Evaluation for AIDS

o C-SET is the fastest and W] is the second fastest
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Conclusion

The I°* experimental study which evaluates and
analyzes the state-of-the-art card. estimation
techniques for subgraph matching

e Unexpected results
o Existing techniques have serious problems in terms of accuracy and efficiency

o A simple sampling method, which is based on an online aggregation technique
designed for relational data, consistently outperforms the existing techniques

® Avenues of research
o Integrate the benefits of Wander]oin with native graph-based techniques

o Hybrid system that leverages native graph stores for query processing
but utilizes a relational framework for cardinality estimation
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